Incorporation of SVS CBVLC Supplementary Controller for Damping SSR in Power System

نویسنده

  • Narendra Kumar
چکیده

Abstract—Static VAR System (SVS) is a kind of FACTS device which is used in power system primarily for the purpose of voltage and reactive power control. In this paper presents a systematic approach for designing SVS supplementary controller, which is used to improve the damping of power system oscillation. The combined bus voltage and line current (CBVLC) supplementary controller has been developed and incorporated in the SVS control system located at the middle of the series compensated long transmission line. Damping of torsional stresses due to subsynchronous resonance resulting from series capacitive compensation using CBVLC is investigated in this paper. Simulation results are carried out with MATLAB/Simulink on the IEEE first benchmark model (FBM). The simulation results show that the oscillations are satisfactorily damped out by the SVS supplementary controller. Time domain simulation is performed on power system and the results demonstrate the effectiveness of the proposed controller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SSR Alleviation using BVLC Supplementary Controlled SVS of Series Compensated Power System

The sub synchronous resonance (SSR) is a substantial problem in power system having a steam turbine generator connected to a series compensated transmission system. Flexible AC transmission systems (FACTS) controllers are widely applied to mitigate SSR. In this paper, a bus voltage and line current (BVLC) supplementary subsynchronous damping controller (SSDC) is proposed to alleviate subsynchro...

متن کامل

Design Supplementary Controller Based on Stabilizing Effect of Delay for Damping Inter Area Oscillations in a Power System

The delay associated with signal transmission through the wide-area measurement system reduces the functionality of the power oscillation damping control system. One of the important issues is the poor operation of the supplementary controller against delay existence, which limits the efficiency of damping of ancillary equipment, such as SVCs in a power system. This paper as a solution proposes...

متن کامل

Design of a New IPFC-Based Damping Neurocontrol for Enhancing Stability of a Power System Using Particle Swarm Optimization

The interline power flow controller (IPFC) is a concept of the FACTS controller for series compensation which can inject a voltage with controllable magnitude and phase angle among multi lines. This paper proposes a novel IPFC-Based Damping Neuro-control scheme using PSO for damping oscil‌la‌t‌i‌o‌ns in a power system to improve power system stability. The add‌i‌tion of a supplementary controll...

متن کامل

A PSO-Based Static Synchronous Compensator Controller for Power System Stability Enhancement

In this paper Power system stability enhancement through static synchronous compensator (STATCOM)based controller is investigated. The potential of the STATCOM supplementary controllers to enhance thedynamic stability is evaluated. The design problem of STATCOM based damping controller is formulatedas an optimization problem according to the eigenvalue based objective function that is solved by...

متن کامل

Optimal Design of UPFC Output Feed Back Controller for Power System Stability Enhancement by Hybrid PSO and GSA

In this paper, the optimal design of supplementary controller parameters of a unified powerflow controller(UPFC) for damping low-frequency oscillations in a weakly connected systemis investigated. The individual design of the UPFC controller, using hybrid particle swarmoptimization and gravitational search algorithm (PSOGSA)technique under 3 loadingoperating conditions, is discussed. The effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014